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The vorticity dynamics of a convective swirling boundary layer are studied from the 
viewpoint of steady, inviscid fluid-dynamics theory. Attention is confined to  the region 
of flow lying directly below and within a circularly shaped updraft. Fluid enters the 
updraft region without vorticity save for that in the boundary layer upstream of the 
updraft radius. Solutions of the equation 

(e.g. Batchelor 1967, p. 545) are presented. By the nature of this approach it allows 
one to  compute the ‘outer’ flow together with the outer boundary-layer structure and 
hence side-st’ep the interaction problem. A drawback is that the inner viscous structure 
is not captured. These solutions are compared to some numerical solutions of the 
time-dependent, viscous axisymmetric Navier-Stokes equations which are reported 
elsewhere (Rotunno 1979). Although the agreement is not perfect, model results are 
close enough whereby a number of useful deductions concerning the effects of viscous 
diffusion and time-dependence may be made. 

1. Introduction 
The interaction of a swirling flow with a stationary plane boundary normal to the 

axis of swirl is usually studied along the following lines. The flow is referred to  a 
system of cylindrical co-ordinates ( r ,  $, x )  with corresponding velocity components 
(u, v, w). Given an ‘outer’ swirling flow (0, vm(r) ,  0) fa,r above the end wall ( z  = 0), 
boundary-layer equations are solved to determine the flow which satisfies frictional 
constraints a t  z = 0. Since the outer flow (0, v,(r), 0) is in cyclostrophic balance 
(ap/ar = pv”,r), the boundary layer is thus under the influence of a pressure gradient 
which produces radially inward motion in the boundary layer which must (owing 
to the geometrical constraint) be converted to an axial motion before the flow reaches 
the origin ( r  = 0). Hence the boundary layer exchanges mass and momentum with 
the outer flow; if the boundary-layer flux is small the interaction is weak and the 
solution process is terminated a t  this stage. A strong interaction requires the boundary 
layer to be recalculated with the modified outer flow. A general review of this type of 
work may be found in Rott & Lewellen (1966)) while a more recent review (and 
relevant to geophysical vortices) is in Lewellen (1976). 

A further complication of analytical considerations is the inclusion of an ‘outer’ 
radial flow, u,(r) as would be appropriate for an intense convective vortex, i.e. a 

t Present address: National Center for Atmospheric Research, P.O. Box 3000, Boulder 
80309. The N.C.A.R. is sponsored by the National Science Foundation. 
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FIGURE 1. The domain and boundary conditions used for the numerical solutions of the axi- 
symmetric Navier-Stokes equations presented in Rotunno ( 1979). The present work describes a 
quasi-analytical model which is solved on this domain. 

tornado. Tornadoes are most probably driven by severe-storm updrafts (Ward 1972); 
imagining the updraft to be of limited horizontal extent and roughly circular, i t  is 
likely that an updraft associated outer radial velocity u,(r) should bet introduced into 
theoretical considerations. Associated with this is a vertical mass flux quite apart 
from that produced by the boundary layer. The result is that what would be con- 
sidered the ‘outer’ flow in this situation is itself a rather complicated flow. And, as 
noted above, even without an ‘outer’ radial velocity, the assumed v,(r) may or may 
not, be compatible with the calculated boundary-layer mass and momentum flux. The 
present work is an account of an attempt to circumnavigate these difficulties. But 
first, some background is in order. 

Barcilon (1967) hypothesizes that the flow in the ‘ corner’ flow of a decaying potential 
vortex v, - r--1 is governed mainly by steady, inviscid dynamics. By a different tech- 
nique and for a steady potential vortex, Burgraff, Stewartson & Belcher (1971) come 
to a similar conclusion. Carrier (1971) in analysing the boundary layer of the flow 
7v,(7) = A ( 1 - 72,t’r3 found the outer part of the boundary layer inviseidly controlled. 
The author upon re-examining some earlier numerical simulation experiments 
(Rotunno 1979; hereafter referred to as I) finds that the outer part of the boundary 
layer is largely steady and inviscid. Again, what would be considered the ‘outer’ 

t To my knowledge, only Jischke & Parang (1975) treat such an outer flow in a boundary-layer 
calculation. 
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flow in I is itself a rather complicated flow. These results and the desire to  formulate 
an analytical model which does not assume apriori an ' outer ' flow lead to the following 
model. 

Suppose we assume, from the outset, that the flow is steady and inviscid. This 
immediately reduces the problem to one of solving (2.1). The problem specification is 
completed by assigning boundary conditions (see figure 1). I n  the present work, I 
concentrate on an example where the flow profiles are known a t  r = R (inflow) with 
only rather weak restrictions (u = 0 )  a t  z = H (outflow).i This is done so that the 
present theory may be checked against the non-steady, viscous numerical simulations 
of I which, in turn, agree in gross measure with certain laboratory experiments 
believed relevant to tornado dynamics (see Snow et al. 1977). Another set of possible 
conditions is briefly examined in 3 4 ( d ) .  

The general methodology is outlined in $ 3 along with the formal posing of the 
problem. I n  $ 3  some simple examples are worked and the vorticity dynamics implied 
by the solutions is discussed. Also in 3 3, equation (2.1) is solved on a domain and 
using boundary conditions identical to  those used in the numerical simulations of I. 

The following results are obtained. 
(i) The present technique can yield solutions which capture most of the main 

features of the boundary layer and outer flow and provides a convenient framework 
within which to  view the interaction problem. 

(ii) The solutions of (3.1) fail to produce an axial downdraft as appears (for a certain 
parameter value) in the numerical solutions of I and in the laboratory. It is reasoned 
that this axial downdraft is a manifestation of the start-up vortex which does not 
get swept downstream ( $ 4 ~ ) .  This feature could not be obtained with the present 
model using boundary conditions identical to that in I .  

(iii) These results lead to some minor speculations concerning the nature of 'vortex 
breakdown' as i t  appears in the chamber flow and the possible effects of upstream/ 
downstream conditions in numerical models of tornado-like vortices. 

2. Theoretical model 

differential equation (see Batchelor 1967, p. 545) 
Vnder the assumptions described in 3 1 it is possible to describe the flow by a single 

where 7 = (au/az - aw/ar) is the azimuthal component of the vorticity, 

H = fr(uz + v2 + w') + P/p 

is the total head, I' = rv is the circulat,ion and P and p are the pressure and density, 
respectively. The strategy in dealing with this type of equation is to determine the 
functionals H [ $ ]  and I"$.], where $ is the stream function defined by the relations 
u = r-l a ~ - / a z  and w = - r-l a$./& a t  a position where the flow originates (upstream), 
then solve (2.1) as a (generally) nonlinear elliptic equation. 

t This does not conflict with my earlier statements concerning um( r ) .  The boundary layer is 
O(8) while the' outer' radial flow has considerable variation over a height of O(h) but ultimately 
goes to zero at z = H (see figure 1). 
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Figure 1 is a schematic diagram of the domain and boundary conditions for the 
numerical computations of I. The numerical model is based on a laboratory model 
of a severe storm updraft in which, it is hypothesized, tornadoes form (Ward 1972). 
The radius R is the updraft radius, the inflow layer depth h corresponds to the depth 
of an inversion layer which presumably prohibits vertical motions for r > R (a region 
not treated here, but see discussion ( 9  4c) below). 

Further support for this model is to be found in the work of Brandes (1978). Based 
on dual-Dopplar radar analysis, radial-vertical cross-sections of the flow around and 
within a severe storm updraft is inferred. By referring to figures 5 and 10 of that 
work, it may be seen that R = 4-5 km and h = 2-3 km. For more extensive discussion 
and justification of this model, see Davies-Jones (1979). 

The functionals H[@] and r[@] are determined a t  r = R as follows. For z > 6 
(main flow), 

which is equivalent to setting v(R, z > 6 )  = 0 as is done in I. 

vertical momentum equation then provides ap/az(R, z )  = 0 so that a t  r = R, 
For z < 6, I assume that w(R,z) = 0 and aw/ar(R,z) = 0. The steady inviscid 

Since, w(R, z < 6)  = 0 implies that a$/ar(R, z < 6) = 0, (2.3) may be written as 

dH 1du2 1 d 
q = 2 @  2R2d$ 

+- - r2. 

To complete the flow specification a t  r = R, the variation with height of u(R,z) and 
r(R,z) for z < 6 must be assigned. Toward this end, the boundary-layer functions 

f(z")  and g(z") are introduced and the variables are non-dimensionalized as follows: 

u = u,f(z"), I' = vo Rg( z") ,  z" = z/S, 

(see figure 1 for definitions). Thus, the governing equation is (recall 7 = au/az - aw/ar) 

= 0, z"[$] > 1, I 
where /3 = S/R and a = v,/u,. The variable z" is now considered to be a functional of 
$ which is determined from the definition off(z") by integrating 

to obtain $(R, z") ,  then inverting to find z"[$].  Substituting (2.6) into (2.5) yields 

(2.7) 
= 0, a[$] > 1. I 
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Equation (2.7) is solved under the following boundary conditions. At z = 0, 
$ ( P ,  0) = 0 indicates no flow through an impermeable surface. One is not a t  liberty 
to also require a@/a2(P, 0) = 0 (no-slip condition) since the higher-order viscous terms, 
which allow both constraints to be satisfied have been discarded. Hence, slippage is 
to be expected. However, the effect appears to be slight and does not greatly affect 
the general arguments to be presented. At the top (2 = 2), I require the flow to exit 
without radial motior,, i.e. a$(?, 2)/% = 0. The centre axis condition is &O, 2) = 0; 
again, the viscous condition aw/ar(o,a) cannot also be enforced. At P = 1 the inflow 
is specified by the formulation 

$(l,S) = p f ( z ) d z ,  2 < p 
J o  

h. 
R 

h h 
- - -Jolf(z”) dz”, < 2 < 2. 
- PR 

Equation (2.7) is nonlinear; even iff and g were chosen to yield a linear right-hand 
side, nonlinearity is still present owing to the fact that the right-hand side changes 
form depending on the value of $(B ,2 ) .  Some analytical deductions are presented 
below, however, the full solution is obtained by numerical methods. 

The analytical model is essentially a model of the advection, tilting, and stretching 
of the inflow boundary-layer vortex lines similar in concept to the model of Mullen 
& Maxworthy (1977). Note that a t  r = R, the vertical vorticity is zero for all z and 
the azimuthal and radial components of vorticity given by 7 = au/& - aw/& and 
5 = - 2v/az, respectively are zero everywhere except for z < 6. The present model also 
has antecedents in the work of Barcilon (1967) and Lilly (1969). As noted in 9 1,  
Barcilon analysed the vortex corner flow (i.e. the flow near r = 2 = 0) under the steady, 
inviscid assumptions by a less direct method with a different far-field flow. Lilly using 
the same methodology as employed here (with buoyancy included) solved for the 
tornado outflow using a cruder boundary-layer specification. The present approach 
is thus a synthesis and refinement of these earlier works. 

3. Solutions of (2.7) 
(a )  A simple example 

The nature of the problem is exposed by the working of a simple example. Consider 
the boundary-layer profiles 

f (2)  = 2 and g(2) = Z2 (3.1) 

with these profiles, (2.7) becomes 

= 0, I$ > 4. J 
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To simplify the problem even further, we restrict attention to the vicinity of the 
chamber top where it is likely that T z - &i?/8r,  i.e. ii2$/aP may be neglected and 
thus the partial differential equation (3.2) becomes an ordinary differential equation. 
Consider first the case where a: = 0 (no swirl), thus (3.2) becomes 

with boundary conditions 
$ ( O )  = 0 and $( 1) = h/8- a. 

(3.3) 

(3.4a, b )  

For all the calculations to be presented here and in I the aspect ratio h/R = 4, SO that 
(3.4b) is $(1) = &(@-l-- 1). Now let P ,  be that radius where $ = 4, i.e. where the 
right-hand side of (3.3) changes form. It is clear that both 4 and a$/aP are continuous 
at 9 = Pc;  Pc is a t  yet unknown satisfying these and the boundary conditions leads to 
the solution 

To determine rc, either part of (3.5) may be used to satisfy the requirement that 
&PC) = 4. Thus, the equation for Pc is 

(3.6) 

The relevant solution is Pc = 2p;  substituting this into (3.5) gives the final form of the 
solution of (3.3): 

(933- ( P y f g 4 p ( l  -p )  - 4p2 = 0. 

The meaning of solution (3.7) becomes more clear upon considering the dimensional 
vertical velocity 

Thus there exists a velocity deficit a t  r = 0 which builds (recall uo < 0 )  to a constant 
within a radius of 28R. Since ct = 0 eliminates vortex line tilting, the solution represent 
the inward advection and compression (viz., o . vu = (0 ,  y u / r ,  0 ) ,  see discussion below) 
of a vortex ring introduced at r = R, x < S. Hence the lower plate boundary layer is 
continued into an axial boundary layer. 

For a: 4 0,  exact solutions of (3.2) with P$/aP neglected) are obtained by a similar 
procedure (see appendix A). Figure 2 displays the non-dimensional vertical velocity 

a=-- - -  w tw 
-uo - P 89 
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and non-dimensional azimuthal velocity 

for /3 = 0 and a = 0,0 .2  and 0.4. As a increases from 0 to 0.4, t2 tends to lose the central 
velocity deficit and in fact is jet-like a t  a = 0.4, P ,  becomes smaller and v(P,) larger. 
For a somewhat larger than 0.4, negative values of $ ( P )  appear in the solution, i.e. 
reverse flow. For smaller /3, this occurs a t  smaller CL. This contradicts the hypothesis 
that all streamlines originate upstream where H ( $ )  and I?(@) are known. Batchelor 
(1967, pp. 546-550) encounters a similar situation in his solutions for rotating axial 
flow in a contracting/expanding cylindrical pipe. For the upstream swirl greater than 
a certain value, the downstream solution exhibits reverse flow. Batchelor suggests 
that the difficulty is rooted in the assumption whereby a2$/aP neglected in (3.2) and 
conjectures that a standing wave might rectify the problem. In  any case, the solutions 
with everywhere positive vertical velocity are valid and provide a basis of under- 
standing needed for the more realistic profiles used below. 

Consider the vorticity dynamics implied by these solutions. The vorticity vector 
w at inflow is prescribed as 

w(R,x < 6) = (Y,?,o). (3.9) 

When a = O(v, = 0 ) ,  vortex lines are circles centred a t  r = 0. The vortex ‘ring’ is 
advected inward and hence is compressed (because its’ length is 2nr and r becomes 
smaller). Figure 3 ( a )  illustrates the situation. For a + 0, the vortex line is not con- 
tained with the domain, i.e. it enters a t  an angle with respect to a radial line (see 
figure 3 b ) .  Since 5 = - av/az < 0 and 7 = &/ax < 0 a t  inflow, the initial direction of 
the vortex line is inward and in the negative azimuthal direction. However it need 
not continue in that direction. Consider again the solutions presented in figure 2. The 
vorticity a t  outflow is 

0 = (0, - aw/ar, T--1 a(Tv)/ar) 

= (5, t 7). (3.10) 
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FIQURE 3. (a )  The motion of a vortex line with no swirl. The lower boundary layer is a vortex 
ring which is advected inward and upward thus producing an axial boundary layer. ( b )  With 
swirl the vortex line enters the domain a t  an angle. It is argued in the text that this is a possible 
configuration for the vortex line. 

Here the radial component ( is always zero, the vertical component 5 is zero (a  = 0) 
or positive (a  > 0). However, the azimuthal component, 7, is negative, less negative 
and then positive for a = 0,072 and 0.4, respectively. The vortex line is a helix however 
its pitch angle (tan-l g /q )  is either negative (a = 0.2) or positive (a  = 0-4). 

The equation governing the azimuthal component of vorticity is (Batchelor 1967, 
p. 517) 

(3.11) 

Thus in the inflow boundary layer ( = -8v/az < 0 and v > 0, hence (3.11) indicates 
an increase in q / r .  However, 7 is negative at inflow and clearly a certain ‘amount’ of 
( is necessary to change the sign of 7 a t  outflow. Equation (3.11) is deceptively simple; 
the derivation of (3.1) indicates that  azimuthal aclvection of vorticity contributes a 
term - v( /r  and the term w . Vu also contributes a term 

The advection term creates azimuthal vorticity as follows. Consider a vortex line a t  
some azimuthal 8 which points radially inward (c < 0). The line is advected in the 
positive azimuthal direction by an amount 1.50, but retains its orientation with respect 
to the lower surface. Thus a t  VB, ’77 N VB. It may be demonstrated in a similar 
fashion that the tilting effect acts to reinforce the production of positive azimuthal 
vorticity (in this circumstance). 

Until now, I have calculated outflow profiles given inflow profiles and inferred the 
dynamics in between. The following section contains numerical solutions of the 
partial differential equation. (2.7) forf(2) and g(Z) which were used in numerical solu- 
tions of the axisymmetric, unsteady Navier-Stokes equations of I. 
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FIGURE 4. A comparison of the present model (top row) i.e. the solution of (3.13) with that of I 
for a = 0, /? = &. The contour lines are drawn starting from a specified minimum value and then 
a line is drawn a t  specified intervals. Thus, umin = - 1 and ubC = 0.1, w,,,, = - 1 and w,~,  = 0.2. 

( b )  f (2)  = 22-22) g(2) = i(3Z-Z') 

These profiles were used in I to insure that u(R,O) = r (R,O)  = 0, u(R,6), r(R,S),  
au/az(R, S ) ,  ar/az(R, S )  are continuous and that a21?/az2(R, 0) = 0 (required by the 
constant viscosity azimuthal momentum equation a t  z = 0). Substituting these profiles 
into (2.7) gives 

= 0, Z[$] 2 1. 
(3.13) 

J 
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To obtain z"[$], (2.6) is integrated to give, 

or 1 22; = 2-62 
2-32-322;  = 0; 

(3.14) 

(3.14) is solved for z", given 0 6 $ < $j and thus 2[$] is obtained in tabular form. 
Details of the numerical solution of (3.13) are given in appendix B. Before proceeding, 
a few words concerning the numerical simulations of I are in order. The computations 
are performed on the domain shown in figure 1 ; initially, there exists an irrotational 
inflow-upflow pattern, then rotation is applied a t  r = R, 0 < z < h. A constant eddy 
viscosity v is used and the majority of cases were run with a radial Reynolds number 
u,, R / v  = lo3. Of course, in the present model, there is no reference to Reynolds 
number, save that the Reynolds number is high enough for the direct effect of viscosity 
to be neglected, and not so high that turbulence could affect transfer not accounted 
for in the theory. However, that the agreement between the present theory and the 
simulation of I is fairly good, I believe, is not fortuitous. For example, the results 
shown in figure 6 (u component) show converging flow with u decreasing to zero near 
r = R, as r = 0 is approached on an intense inward flow at the lowest levels is observed. 
Now, based on my experience with the numerical model, decreasing or increasing the 
radial Reynolds number will produce a more or less diffuse flow pattern but will not 
alter the basic pattern produced. While not conclusive proof, I believe these observa- 
tions to be good prima facie evidence for the present case. 

Figure 4 is a comparison between the present model and that of I for a = 0,  p = +z.t 
Considering the crudeness of the approximations, the agreement is remarkable. One 
may infer the following : 

(i) The shape and position of the separated streamline is reproduced accurately by 
the present model. The flow within the separation region cannot be calculated within 
the separation region, since this violates the hypothesis that  all the flow originates 
upstream ( $ 3  u ) .  (Long 1956 encountered the same type of phenomenon in his solutions 
for a source (sink) on the axis of a rotating fluid.) The presence of the region of separated 
flow does not invalidate the rest of the solution. 

(ii) The outflow exhibits a vertical velocity profile with a central velocity deficit 
(see (3.8)) which increases to a constant value within a radius of Pc z 0.33 (equation 
(3.6) gives 9, = (2p)B = 0.29) which compares favourably to the solutions of I. 

(iii) The 'kink' in the vertical velocity field evident in the lower central region is 
absent from the solutions of I. One may reasonably guess that viscous diffusion acts 
in the latter case to smear out these kinks. 

Figure 5 is a comparison between the present model and that of I for a! = 0.1, 
/3 = $z. The following features deserve note; 

(i) Again, the separation bubble is almost exactly reproduced by the present model. 
Viscous action diffuses angular velocity across the separated streamline in I and 
hence weakly rotating flow appears in the general area of the separation. 

(ii) The irrotational flow (i.e. w - r-l)  is reproduced by (3.13). Note the similarity 
of the value and position of the numerical values on the contour lines. 

(iii) Along the axis, the solutions of (3.13) indicate large 2, and w. The solutions of 

t In I, uo = - 1 fts-1 and contour plots of velocity are also in these units. Hence the non- 
dimensional 2i, 6, &J may be compared directly. 
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FIGURE 5. The same as figure 4 except a = 0.1, ,6 = >$-; v,,, = 0, v ,~ ,  = 0.1. 
w and v become indefinitely large near T = 0, z = 2 contours deleted. 

I indicate that v,,, N 0.48 a t  P NN 0-17,d z 1. Equation (3.13) also indicates a similar 
value at  that position, however from there to r = 0, v grows indefinitely while the 
counterpart solution of I has v -+ 0 as r -+ 0. Note further that the example of 9 3 (a )  
did not exhibit this behaviour. (In fact, the profiles were chosen €or this reason.) 

Consider again (2.7); in particular a t  r = 0, i.e. 

(3.15) 

= M ,  say. 

If M + 0, Q-+m as P + O .  For the simple example of 9 3(a) M = 0 (take lim of [3.2]), 

however the lim (3.14) gives 
L n  

L O  
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FIGURE 6. The same as figure 4 except cc = 0.4, p = 4; v,, = 0.5. 

Thus T (  = u,8+j/R2)-++~ as r+  0 and awl&+- 00, hence the very strong axial jet. 
Since (near P =' 0) 

it follows that 

NOW since 0 = ctP-lg(x"[$]) and g - x" for 2-t 0 and x" N $* [from (3.14)1, it follows t h a t  
g N P(lnPI3 and hence that 0-t rlnP(4 as P - t  0. The numerical solutions of I can invoke 
viscous action to prevent this from happening, but' of course the present model cannot. 
Thus, in this and the following example, we see that what would be considered the 
'outer' flow in the usual boundary layer theory emerges naturally from these solutions 
and the explanation for why it possesses a particular radial distribution of velocity 
is straightforward. Namely, the inflowing fluid (at r = R) possesses vorticity only near 
the ground, above this the flow is irrotational, as the flow turns toward the vertical 
the rotational part of the Aow is confined near r = 0, this is surrounded by a potential 
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(a ) (b  ) (C) ( d )  

FIGURE 7. (a)  The starting vortex of the chamber flow with a free slip lower boundary condition; 
no azimuthal vorticity initially. (b) The vortex line undergoes differential advection, negative 
7 is produced. (c) A further stage where negative 4 impedes inward progress of the basic flow. 
(d )  The vortex line comes to  rest with the velocity field at some radius (dashed circle on lower 
plate). 

vortex v(r)  - r-l. That the particular vorticity distribution of the inflow boundary 
layer implies singular values of v and w a t  r = 0 indicates the sensitivity of the 
downstream distribution of w(r) and W(T) to  the inflow boundary layer profiles. 

Figure 6 is the comparison of the present model solutions with those of I for 01 = 0.4, 
/3 = 4. Here the difference is great owing to the axial downdraft which occurs in the 
latter case. However, note that the boundary layer and cornert flow are roughly 
similar. That the axial downdraft is a feature of the flow geometry was demonstrated 
by the author (Rotunno 1977). I n  that study, a free-slip lower boundary condition 
was used in the same domain as shown in figure 1; y(R,z) = 0 for all z. Within the 
context of the present model, this amounts to letting dH/d$ = dF/d$ = 0 for all $. 
In this case, equation (2.7) becomes, 

(3.16) 

The solution of which does not exhibit any downdraft (using the same outflow 
boundary conditions). Lewellen (1971) argues that if the flow is allowed to reach 
r = 0 with I’ = ct, v would be infinite and hence a dynamically unsupportable pressure 
drop occurs. One must hypothesize the existence of a core region into which the 
inflowing air does not penetrate. The radius of this core is then determined given some 
further hypothesis on the outflow. I will present an alternative view of the nature of 
this problem in the next section (see 9 4 b ) .  

4. Apologia 
(a )  Viscous diffusion 

It appears the major role of viscous diffusion in the numerical solutions of I is to allow 
the azimuthal velocity and vorticity to vanish a t  r = 0. The arguments of 5 3 ( b )  
indicate that v and a w p  will not vanish (nor necessarily remain bounded) a t  .3 = 0 
if the upstream distributions of u(R, 5) and v ( R ,  5) do not allow it, Thus, a very strong 
connexion between the axial core flow and the upstream boundary layer has been 
established. 

t The validity of the traditional boundary-layer assumption (ap/i?z = 0) near the ‘ corner’ 
has been questioned; this assumption is not made in the present analysis. 
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( b )  Unsteadiness 
I believe the situation described at the end of § 3 ( b )  can he explained by appealing 
to the time development of the flow. Following Benjamin (1 970) and McIntyre (1972), 
I regard the steady solutions of (2.1) as those resulting from an appropriate initial 
value problem. 

Consider an initially irrotational flow without swirl with no stress on the solid 
boundaries (figure 7a) .  Then, the screen spins and sheds a starting v0rtex.t The 
vorticity a t  that time is zero for all z except a t  (R, h)  where <( = - av/az) is large and 
positive and at  (R, 0 < z < h)  where < = r-l a(rv)/ar) is large and positive. A vortex 
line is shown in figure 7 ( b ) .  Now, since ‘a  vortex tube moves with the fluid and 
its strength remains constant’ (Helmholtz 1858, summarized by Batchelor 1967, 
p. 274) the next stage in the development is as it appears in figure 7 ( c ) ;  the lower part 
of the vortex line moves inward and in the positive azimuthal direction faster than the 
upper part because such is the velocity field. Thus a negative azimuthal component 
of vorticity develops via the tilting terms [see again (3.11)l. The development of 
negative 7 impedes the inward progress of the flow and induces axiaI downflow 
(Rotunno 1977, p. 1946). Thus along an almost vertical line w M 0 the vortex tube 
stagnates and appears as depicted in figure 7 (d ) ,  which is an equilibrium situation. 
The whole process is similar to the shedding of a starting vortex behind an airfoil 
(see, e.g. Prandtl & Tietjens 1957, p. 219). 

The arguments of the preceding sections show that the boundary layer tends to 
produce large positive 7. For small swirl (a: < 1) the boundary layer process dominates 
the solutions of I (i.e. positive 7 near the axis and in the corner). Hence the good 
agreement between the present model and that of I for low a. For larger swirl the 
negative 7 from the starting vortex produces downflow aloft while the positive 7 
induces axial upflow below; the collision of positive and negative 7 appears to be 
associated with ‘vortex breakdown’ as it appears in the chamber flow.$ The extent 
to which the present discussion complements existing theories of vortex breakdown 
is unknown a t  present. 

(c)  TheJEow for B =- 1 

The flow for B > 1 is undoubtedly crucial since it is there that the profiles f ( 2 )  and 
g(2) are determined by the ‘outer’ flow and frictional ground constraints. Boundary- 
layer theory here is most useful; such a theory is given by Jischke & Parang (1975), 
which treats the case where u, N 1 / r  and v, N l / r  for r > R. - 

(2)  A theoretical problem 

The present analysis assumes that the bulk of the knowledge of the flow comes from 
‘upstream ’, i.e. u(R, z ) ,  v(R,  z )  and q(R, z )  (or w(R,  z ) )  are given and only the rather 
weak requirement of u ( r , H )  = 0 is required a t  outflow. Of course, uo is deduced 
from the volume flow rate through the storm updraft Q (i.e. uo FZ &/(2nRh)) which is 
downstream information. This is the basic assumption of numerical models such as 

t Vorticity is added, whether it be by a rotating screen, vanes, etc., is immaterial. 
$ To be contrasted with ‘vortex breakdown’ aa it appears in other flow situations. For a 

recent review see Lichovich (1978). 
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Rotunno (1977, 1979) and Lewellen & Teske (1977). However, it is possible to  make 
the alternative assumption that the bulk of the internal dynamics of the vortex is 
determined by downstream conditions. Consider the following. Let w(r, H )  and 
v(r, H )  be given and let u(r ,  H )  = au/az ( r ,  H )  = 0. A procedure analogous to that in 9 2 
can be carried out! to determine H ( @ )  and I’(@). This amounts to requiring all stream- 
lines to exist with a given value of H and I’. With some rather weak conditions a t  
r = R(a$/ar(R,z) = 0, say) a solution can be found. My conjecture is that this con- 
strains the interior flow in much the same way as the specification of f ( 2 )  and g ( Z )  
does in the present case. I believe this to be an underlying feature of the numerical 
simulations of Smith & Leslie (1978; hereafter referred to as SL) for the following 
reasons. SL drive the vortex flow with a concentrated axial body force high up in a 
domain similar to that in figure 1. It is possible that the vertical velocity profile 
w(r,  H )  (which is > 0) is more or less fixed by this procedure. I do not wish to say that 
this approach is illogical or unphysical, to be sure, the vortex is affected by both 
upstream and downstream conditions. The present theoretical considerations do, I 
believe, bring the problem into focus. 

5. Summary 
A theory for the interaction with a lower surface of a vortex, imbedded in a highly 

convective flow has been developed. The theory assumes the flow is ‘effectively 
inviscid with vorticity’ (Batchelor 1967, chap. 7);  the vorticity being given by the 
upstream boundary -layer profiles. 

Solutions are obtained which are comprehensive in that the ‘outer’ flow is solved 
for. in addition to the boundary-layer flow and provide a convenient framework 
within which to view the interaction problem. 

Comparison of the present inviscid model to numerical simulation experiments 
indicate that the former can obtain most of the salient features of the latter, thus, 
lending further support to the work cited in the introduction. 

The failure of the present model to yield an axial downdraft, while the numerical 
simulation counterpart did (under identical boundary conditions) leads to the inter- 
pretation given in § 4(c). This, in turn, leads to somewhat fuller view of the ‘vortex 
breakdown’ as it appears in the chamber flow. 

Finally, I reconsider the nature of the problem and reformulate it as one where the 
functionals H ( @ )  and I?(*) are given a t  outftow to show the possibly strong constraints 
present in models where the vertical velocity is more or less given a t  outflow. 

Appendix A 
Equation (3.2), neglecting a2$/aP2, is solved as follows. First let 

y = $82 (A 1) 

(A 2) 

whereby (3.2) becomes 

$ 2 *. 
For $ < 8, the homogeneous form of (A 2) is seen to be Whittaker’s equation (e.g. 
Abramowitz & Stegun 1970, p. 505) the solutions of which are Whittaker functions. 
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One may use these solutions and carry out an analogous procedure to that for u = 0. 
Since the Whittaker functions must be calculated by series summation (the tables 
invariably do not contain the values needed). I have found i t  more convenient to 
proceed directly t.0 the power series solution of (A 2) ($ < t ) .  Thus, the equation to 
be solved is 

$(O) = 0 ;  

(A 2) has a regular singL-ar point at  y = 0,  hence the Frobenius methol 
1962, p. 129) is used. Thus, let 

$(y) = 5 Akyk+’* 
k= 0 

(A 3) 

(Hildebrand 

Substituting (A 4) into (A 3) and equating powers of y, it  is easy to show that 

p = 1, (A 5 )  

1 
A - - ( l -2u2A0)  

- 2/32 
and 

The solution for $ < & is thus determined to within a constant (A,).  
For$ > 3, 

$(Y) = c1 + c23 (A 7) 

where cl, c2 are constants. The outer boundary condition ($(&) = k / S - t  3 y, say) 
requires c2 = y - &cl. Continuity of $ and a$/ay at y = ye (as yet unknown) gives 

and 

The solution procedure is to first guess a value for A,, compute $(y) by (A 4) starting 
at y = A (yi = iA,$(yi) = $i, i= 1,m)  at each yi check that Gi < 9. If a t  some yi, 
gi = + compute c1 (with the guessed A ,  and yc at the point where $i = 6 )  by (A 9).  
Then continue the computation of $i via (A 7 )  if e(A,) = I$($) - y (  < E ,  a solution is 
reached. If not, a new guess a t  A ,  is made. Formally, one wishes to find the zero of 
e(A,), hence I employed the method of successive bisections (RlcCalla 1967, p. 76) 
to obtain a systematic way of guessing a new A ,  which ensures convergence. 
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Appendix B 

1969, p. 104). I n  finite difference form, (3.13) is 
Equation (3.13) is solved by a modified version of the Gauss-Seidel method (Ames 

= Ar2gi,, i = 1,121, j = 1,241. (B 1) 

Let Ar = Az = A, Pi = ( i - l ) A ,  i = 1,121. 
Thus (3.13) is solved on exactly the same grid structure as used in I. Of course 

gi,, is nonlinear function of $i , i .  Hence, I take the ad hoc approach to solve (B 1) as 
though gi,i were simply a non-homogeneous term which is updated along with the 
rest of the $i,j during the Gauss-Seidel iteration procedure. Thus the algorithm is 

i = 2,121, j = 2,241. (B 2) 

The initial guess is obtained by solving (B 1)  with g i , j  = 0 with a direct solver. There- 
after (B 2) is used, convergence is achieved after several hundred interactions. This 
is not excessive considering the large number of grid points used. 
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